MATH

GRADE 7 \& 8

LEARN AT HOME

DAY 3

DIGITS

Use digits 0 to 9 once to solve:
$-2-(1-5)=\square$
$40 \div(-2) \times(-3)=\square$
$\square \times(\square-\square)=-48$
$\square \times \square \times \square=-13$
$(-2)^{5} \div(-2)^{2}+(-3)^{2}=\square$

Use digits 0 to 9 once to solve:

Make your own, and challenge a classmate!

SIGN WAR

Each player flips 2 cards at a time and determines the sum of these two cards. Red cards are negative black is positive. The winner is the player with the greatest value

Alternative - try with subtraction!

4 FOURS

The goal is to find a number sentence using only the number 4 , four times, to yield values of whole numbers 0 through 10 (or higher!). You can use any mathematical operation (adding, dividing, squaring, etc). The catch? You must follow BEDMAS! Here's a possible first one:
$(4+4)-(4+4)=0$

BEDMAS 24

Deal each player 4 playing cards; use mathematical operations to yield an answer closest to 24 .

DAY 4
FRACTION REVIEW

Make your favourite recipe! The challenge? Use $1 / 4$ cup and/or TBSP as the only measuring tool.
It is recommended to do some calculations before starting the baking!

MULTIPLICATION WAR

Each player flips 1 card at a time. The first person to say the (correct) product of the two flipped cards wins the set. Assign these values to face cards:
Joker = 14, King = 13
Queen = 12, Jack = 11

BUDGETING

Use a current grocery store ad. Find 6 ads that use fractions or percents to advertise the sale of an item. Explain the discount using values as fractions or percents. Determine the unit cost before and after the sale price.

Mathies Website

BATTLESHIP

Modify your game board to be a Cartesian coordinate plane: include horizontal and vertical axes, positive and negative. Change the scale every game!

